python opencv 检测移动物体并截图保存

最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当时第一反应是用opencv做识别,不过回家想想,河面相对的东西比较少,画面比较单一,只需要检测有没有移动的物体不就简单很多嘛,如果做街道垃圾检测的话可能就很复杂了,毕竟街道上行人,车辆,动物,很多干扰物,于是就花了一个小时写了一个小的demo,只需在程序同级目录创建一个img目录就可以了

# -*-coding:utf-8 -*-  
__author__ = "ZJL"

import cv2
import time


# 保存截图
save_path = './img/'

# 定义摄像头对象,其参数0表示第一个摄像头
camera = cv2.VideoCapture(0)

# 判断视频是否打开
if (camera.isOpened()):
    print('Open')
else:
    print('摄像头未打开')

# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))

# 帧率
fps = 5
# 总是取前一帧做为背景(不用考虑环境影响)
pre_frame = None

while(1):
    start = time.time()
    # 读取视频流
    ret, frame = camera.read()
    # 转灰度图
    gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    if not ret:
        break
    end = time.time()

    cv2.imshow("capture", frame)

    # 运动检测部分
    seconds = end - start
    if seconds < 1.0 / fps:
        time.sleep(1.0 / fps - seconds)
    gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
    # 用高斯滤波进行模糊处理
    gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)

    # 如果没有背景图像就将当前帧当作背景图片
    if pre_frame is None:
        pre_frame = gray_lwpCV
    else:
        # absdiff把两幅图的差的绝对值输出到另一幅图上面来
        img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
        #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)
        thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
        # 膨胀图像
        thresh = cv2.dilate(thresh, None, iterations=2)
        # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)
        image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        for c in contours:
            # 设置敏感度
            # contourArea计算轮廓面积
            if cv2.contourArea(c) < 1000:
                continue
            else:
                print("出现目标物,请求核实")
                # 保存图像
                cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)
                break
        pre_frame = gray_lwpCV

     if cv2.waitKey(1) & 0xFF == ord('q'):
         break


# release()释放摄像头
camera.release()
#destroyAllWindows()关闭所有图像窗口
cv2.destroyAllWindows()


想出现一个矩形框跟随移动物于是进行了改造,结果发现效果不是很理想,不能很好的框住移动目标,要么只框一部分,要么出现在移动目标附近,尴尬

# -*-coding:utf-8 -*-  
__author__ = "ZJL"

import cv2
import time


# 保存截图
save_path = './img/'

# 定义摄像头对象,其参数0表示第一个摄像头
camera = cv2.VideoCapture(0)

# 判断视频是否打开
if (camera.isOpened()):
    print('Open')
else:
    print('摄像头未打开')

# 测试用,查看视频size
size = (int(camera.get(cv2.CAP_PROP_FRAME_WIDTH)),
        int(camera.get(cv2.CAP_PROP_FRAME_HEIGHT)))
print('size:'+repr(size))

# 帧率
fps = 5
# 总是取前一帧做为背景(不用考虑环境影响)
pre_frame = None

while(1):
    start = time.time()
    # 读取视频流
    ret, frame = camera.read()
    # 转灰度图
    gray_lwpCV = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    if not ret:
        break
    end = time.time()

    # 显示图像
    # cv2.imshow("capture", frame)

    # 运动检测部分
    seconds = end - start
    if seconds < 1.0 / fps:
        time.sleep(1.0 / fps - seconds)
    gray_lwpCV = cv2.resize(gray_lwpCV, (500, 500))
    # 用高斯滤波进行模糊处理
    gray_lwpCV = cv2.GaussianBlur(gray_lwpCV, (21, 21), 0)

    # 如果没有背景图像就将当前帧当作背景图片
    if pre_frame is None:
        pre_frame = gray_lwpCV
    else:
        # absdiff把两幅图的差的绝对值输出到另一幅图上面来
        img_delta = cv2.absdiff(pre_frame, gray_lwpCV)
        #threshold阈值函数(原图像应该是灰度图,对像素值进行分类的阈值,当像素值高于(有时是小于)阈值时应该被赋予的新的像素值,阈值方法)
        thresh = cv2.threshold(img_delta, 25, 255, cv2.THRESH_BINARY)[1]
        # 膨胀图像
        thresh = cv2.dilate(thresh, None, iterations=2)
        # findContours检测物体轮廓(寻找轮廓的图像,轮廓的检索模式,轮廓的近似办法)
        image, contours, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        for c in contours:
            # 设置敏感度
            # contourArea计算轮廓面积
            if cv2.contourArea(c) < 1000:
                continue
            else:
                # 画出矩形框架,返回值x,y是矩阵左上点的坐标,w,h是矩阵的宽和高
                (x, y, w, h) = cv2.boundingRect(c)
                # rectangle(原图,(x,y)是矩阵的左上点坐标,(x+w,y+h)是矩阵的右下点坐标,(0,255,0)是画线对应的rgb颜色,2是所画的线的宽度)
                cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
                # putText 图片中加入文字
                cv2.putText(frame, "now time: {}".format(str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) ), (10, 20),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
                print("出现目标物,请求核实")
                # 保存图像
                cv2.imwrite(save_path + str(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) + '.jpg', frame)
                break
        pre_frame = gray_lwpCV

        # 显示图像
        cv2.imshow("capture", frame)
        # cv2.imshow("Thresh", thresh)
        # 进行阀值化来显示图片中像素强度值有显著变化的区域的画面
        cv2.imshow("Frame Delta", img_delta)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break


# release()释放摄像头
camera.release()
#destroyAllWindows()关闭所有图像窗口
cv2.destroyAllWindows()


相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页